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1. INTRODUCTION

Compared to the finite impulse response (FIR) filter, the infinite impulse response (IIR)
filter can be used to model an ANC system better with much fewer coefficients due to its
inherent zero-pole structure. Hence, the computation load reduces, and the system
performance improves [1]. However, the filtered-U LMS (FULMS) algorithm [2], an IIR
filter-based algorithm commonly used so far, cannot ensure global convergence [3]. In this
paper, we propose a new algorithm based on an IIR filter which ensures global
convergence with slightly increased computation load.

Figure 1(a) depicts a typical ANC situation where the primary noise signal dðnÞ from
the noise source is to be cancelled at the location of the error sensor. The noise source is
available from a reference sensor. The idea is to find the optimal filter (controller) WðzÞ
such that the noise source signal filtered by this optimal filter and sent out at the
loudspeaker interferes with the primary noise signal in such a way that at the location of
the error sensor a zone of silence is generated.

The transfer functions in Figure 1(a) are defined as follows:
GðzÞ: The transfer function from the noise source to the reference sensor. GðzÞ ¼ 1 (i.e.,

perfect correlation) is assumed in this paper for convenience.
PðzÞ: The transfer function of the primary path (from the noise source to the error

sensor).
SðzÞ: The transfer function of the secondary path (from the output of the filter to the

error sensor).
FðzÞ: The transfer function of the feedback path (from the output of the filter to the

reference sensor).
The block diagram of an IIR filter-based adaptive algorithm is shown in Figure 1(b),

where the IIR filter is implemented by two FIR filters. The error signal is fed back to the
adaptive algorithm as a control signal in order to adaptively find the optimal coefficients
for the IIR filter.

The paper is organized as follows: derivation of the proposed algorithm is presented
without acoustic feedback in section 2; convergence analysis is given in section 3; the
effects of acoustic feedback on the convergence of the proposed algorithm are discussed in
section 4; in section 5 some simulation results are given; section 6 is the summary.

In this paper, the following mixed notation is used: if HðzÞ ¼
P1

k¼�1 hkz�k then
HðzÞuðnÞ ¼

P1
k¼�1 hkuðn � kÞ:
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Figure 1. (a) ANC situation; (b) adaptive IIR algorithm for ANC.
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2. DERIVATION OF THE NEW ALGORITHM

In this section, no acoustic feedback (i.e., FðzÞ ¼ 0) is assumed. As shown in
Figure 1(b), the error signal eðnÞ can be expressed as

eðnÞ ¼ dðnÞ � uðnÞ ¼ dðnÞ � SðzÞyðnÞ ð1Þ

or

eðnÞ ¼ dðnÞ � SðzÞ½BTðnÞXðnÞ þ ATðnÞYðnÞ�; ð2Þ

where BðnÞ ¼ ½b0ðnÞ b1ðnÞ 	 	 	 bN�1ðnÞ�T represents the coefficients vector of FIR filter B,
AðnÞ ¼ ½a1ðnÞ a2ðnÞ 	 	 	 aMðnÞ�T the coefficients vector of FIR filter A, XðnÞ ¼
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½xðnÞ xðn � 1Þ 	 	 	 xðn � N þ 1Þ�T the input vector of FIR filter A, YðnÞ ¼ ½yðn � 1Þ
yðn � 2Þ 	 	 	 yðn � MÞ�T the input vector of FIR filter B, N the order of FIR filter B, M

the order of FIR filter A. With the assumption of slow adaption, equation (2) can be
written as [3]

eðnÞ ¼ dðnÞ � BTðnÞðSðzÞXðnÞÞ � ATðnÞðSðzÞYðnÞÞ ð3Þ
or

eðnÞ ¼ dðnÞ � hTðnÞuðnÞ; ð4Þ
where

hðnÞ ¼ ½b0ðnÞ b1ðnÞ 	 	 	 bN�1ðnÞ a1ðnÞ 	 	 	 aMðnÞ�T; ð5Þ

uðnÞ ¼ ½SðzÞXTðnÞ SðzÞYTðnÞ�T: ð6Þ
Defining

Bðn; zÞ ¼ b0ðnÞ þ b1ðnÞz�1 þ b2ðnÞz�2 þ 	 	 	 þ bN�1ðnÞz�ðN�1Þ; ð7Þ

Aðn; zÞ ¼ a1ðnÞz�1 þ a2ðnÞz�2 þ 	 	 	 þ aMðnÞz�M ; ð8Þ
equation (2) can be written as

eðnÞ ¼ dðnÞ � Bðn; zÞ½SðzÞxðnÞ� � Aðn; zÞ½SðzÞyðnÞ�: ð9Þ
In the FULMS algorithm, Efe2ðnÞg; the mean square error (MSE) at time n; is

adopted as the cost function. Using the LMS method, hðn þ 1Þ can be calculated
as

hðn þ 1Þ ¼ hðnÞ � m
2

@e2ðnÞ
@hðnÞ ¼ hðnÞ � meðnÞ @eðnÞ

@hðnÞ: ð10Þ

With Feintuch’s assumption [4], one can obtain [3]

@eðnÞ
@hðnÞ ¼ �uðnÞ: ð11Þ

Substituting equation (11) into equation (10) yields

hðn þ 1Þ ¼ hðnÞ þ meðnÞuðnÞ; ð12Þ
which is the expression of the FULMS algorithm. Since YðnÞ is dependent on coefficients
vector hðnÞ [1], it can be seen from equation (3) that Efe2ðnÞg is not a quadratic function of
the coefficients and may have multiple local minima. Therefore, the FULMS algorithm
may converge to a local minimum if the initial value of the filter coefficients is within the
neighborhood of that local minimum [3].

A new cost function Efx2ðnÞg instead of Efe2ðnÞg is proposed in the new algorithm,
where

xðnÞ ¼ ½1 � Aðn; zÞ�eðnÞ: ð13Þ
Let EðnÞ ¼ ½eðn � 1Þ eðn � 2Þ 	 	 	 eðn � MÞ�T; equation (13) can be written as

xðnÞ ¼ eðnÞ � ATðnÞEðnÞ: ð14Þ
Substituting equation (3) into the above equation yields

xðnÞ ¼ dðnÞ � BTðnÞðSðzÞXðnÞÞ � ATðnÞðSðzÞYðnÞ þ EðnÞÞ: ð15Þ
Noting that dðnÞ ¼ sðzÞyðnÞ þ eðnÞ; equation (15) becomes

xðnÞ ¼ dðnÞ � BTðnÞðSðzÞXðnÞÞ � ATðnÞDðnÞ; ð16Þ
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Figure 2. MSE surfaces for Efx2ðnÞg and Efe2ðnÞg:
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where DðnÞ ¼ ½dðn � 1Þ dðn � 2Þ 	 	 	 dðn � MÞ�T; and equation (16) can be written as

xðnÞ ¼ dðnÞ � hTðnÞwðnÞ; ð17Þ

where wðnÞ ¼ ½SðzÞXTðnÞ DTðnÞ�T; and hðnÞ is defined as in equation (5). There are two
points of importance worthy of note:

(1) Since SðzÞXðnÞ and DðnÞ are both independent of hðnÞ; then from equation (16)
Efx2ðnÞg is a quadratic function of the coefficients, and thus has a unique global
minimum.

(2) As shown in Appendix A, Efx2ðnÞg ¼ 0 if and only if Efe2ðnÞg ¼ 0: So when the
coefficient vector is reaching the optimal value such that the primary dðnÞ is perfectly
cancelled [5, 2], both MSEs reach their global minimum.

Therefore, the optimization of Efe2ðnÞg can be converted into an optimization of
Efx2ðnÞg: The latter is easier to solve and global convergence can be guaranteed. Figure 2
shows some Efx2ðnÞg and Efe2ðnÞg; where hðnÞ is simply chosen as a one-dimensional
variable for the convenience of illustration.

Use the LMS method to optimize Efx2ðnÞg; then hðn þ 1Þ can be calculated as

hðn þ 1Þ ¼ hðnÞ � m
2

@x2ðnÞ
@hðnÞ ¼ hðnÞ � mxðnÞ @xðnÞ

@hðnÞ: ð18Þ

The above equation can be split into

bkðn þ 1Þ ¼ bkðnÞ � mxðnÞ @xðnÞ
@bkðnÞ

ðk ¼ 0; 1; . . . ;N � 1Þ ð19Þ

and

akðn þ 1Þ ¼ akðnÞ � mxðnÞ @xðnÞ
@akðnÞ

ðk ¼ 1; 2; . . . ;MÞ: ð20Þ

From equation (16) it follows that

@xðnÞ
@bkðnÞ

¼ �SðzÞ xðn � kÞ þ
XM

j¼1

ajðnÞ
@dðn � jÞ

@bk

" #

¼ �SðzÞxðn � kÞ ðk ¼ 0; 1; . . . ;N � 1Þ ð21Þ



+

noise source x0(n) primary path
P(z)

primary noise d(n) error signal e(n)

secondary path
S(z)

+
-

+

y(n)FIR filter
B(n,z)

FIR filter
A(n,z)

IIR filter

F(z)+
+

re
fe

re
nc

e
si

gn
al

x(
n)

S(z)
S(z)

LMS
LMS

+
+

1-A(n,z)

)(nξ

Figure 3. Block diagram of the proposed algorithm.
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and

@xðnÞ
@akðnÞ

¼ � dðn � kÞ þ
XM

j¼1

aj

@dðn � jÞ
@akðnÞ

" #
¼ �dðn � kÞ ðk ¼ 1; 2; . . . ;MÞ: ð22Þ

Note that dðnÞ ¼ SðzÞyðnÞ þ eðnÞ; and equation (22) becomes

@xðnÞ
@akðnÞ

¼ �½SðzÞyðn � kÞ þ eðn � kÞ� ðk ¼ 1; 2; . . . ;MÞ: ð23Þ

Substituting equation (21) into equation (19) and equation (23) into equation (20) yields

bkðn þ 1Þ ¼ bkðnÞ þ mxðnÞ½SðzÞxðn � kÞ� ðk ¼ 0; 1; . . . ;N � 1Þ; ð24Þ

akðn þ 1Þ ¼ akðnÞ þ mxðnÞ½SðzÞyðn � kÞ þ eðn � kÞ� ðk ¼ 1; 2; . . . ;MÞ ð25Þ
or equivalently

hðn þ 1Þ ¼ hðnÞ þ mxðnÞwðnÞ: ð26Þ
Equations (14), (24) and (25) are expressions of the new algorithm; the block diagram is

shown in Figure 3.
To compare the computation complexity of the proposed algorithm with that of the

FULMS algorithm, let the secondary path transfer function SðzÞ be implemented by an
FIR filter of order L: The computation complexities of the proposed algorithm and the
FULMS algorithm are listed in Tables 1 and 2 respectively. It is seen from Tables 1 and 2
that the computation load of the proposed algorithm is 3M þ 2N þ 2L þ 5; and that for
the FULMS algorithm is 2M þ 2N þ 2L þ 3: So the complexity of the proposed
algorithm increases only slightly compared to that of the FULMS algorithm.

The proposed algorithm is different from the SHARF one, which is proposed by
Larimore et al. [6] and has been introduced to ANC by Eriksson [2] and Kuo [3]. Using the
SHARF algorithm in ANC, the coefficients of the IIR filter are updated as

hðn þ 1Þ ¼ hðnÞ þ m½CðzÞeðnÞ�½uðnÞ�; ð27Þ
where CðzÞ is a moving averaging filter. CðzÞ=DðzÞ should be strictly positive real (SPR) in
order to guarantee global convergence of the SHARF algorithm, where DðzÞ represents
the system denominator [7]. The main problem of the SHARF algorithm seems to be the



Table 1

Computational complexity of the FULMS algorithm

Operation Mult/Add

yðnÞ ¼ BTðnÞXðnÞ þ ATðnÞYðnÞ M þ N þ 1
SðzÞXðnÞ L
SðzÞYðnÞ L

Bðn þ 1Þ ¼ BðnÞ þ meðnÞ½SðzÞXðnÞ� N þ 1
Aðn þ 1Þ ¼ AðnÞ þ meðnÞ½SðzÞYðnÞ� M þ 1

P
2M þ 2N þ 2L þ 3

Table 2

Computational complexity of the proposed algorithm

Operation Mult/Add

yðnÞ ¼ BTðnÞXðnÞ þ ATðnÞYðnÞ M þ N þ 1
SðzÞXðnÞ L

DðnÞ ¼ SðzÞYðnÞ þ EðnÞ L þ 1
xðnÞ ¼ eðnÞ � ATðnÞEðnÞ M þ 1

Bðn þ 1Þ ¼ BðnÞ þ meðnÞ½SðzÞXðnÞ� N þ 1
Aðn þ 1Þ ¼ AðnÞ þ meðnÞ½SðzÞDðnÞ� M þ 1

P
3M þ 2N þ 2L þ 5
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non-existence of a robust practical procedure to define the moving averaging filter CðzÞ to
satisfy the SPR condition. This is a consequence of the fact that the characteristics of DðzÞ
are unknown in practice.

3. CONVERGENCE ANALYSIS

It should be noted that just like many other IIR filter-based adaptive algorithms, the
proposed one may suffer instability as some poles of the filter go out of the unit circles [3].
In the following, convergence analysis is performed with the stability being premised. All
signals are assumed to be wide-sense stationary.

For given orders M and N; let ho ¼ ½bo
0 bo

1 	 	 	 bo
N�1 ao

1 	 	 	 ao
M �T represent the

coefficients of the optimal IIR filter, which enable Efe2ðnÞg to reach the global minimum;
then the optimal transfer function is expressed as

BoðzÞ
1 � AoðzÞ ¼

bo
0 þ bo

1z�1 þ bo
2z�2 þ 	 	 	 þ bo

N�1z�ðN�1Þ

1 � ao
1z�1 � ao

2z�2 � 	 	 	 � ao
Mz�M

: ð28Þ

As shown in Figure 4, dðnÞ can be decomposed as

dðnÞ ¼ dmðnÞ þ duðnÞ; ð29Þ
where

dmðnÞ ¼ SðzÞ BoðzÞ
1 � AoðzÞ xðnÞ; duðnÞ ¼ dðnÞ � dmðnÞ: ð30; 31Þ
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Figure 4. Block diagram of the proposed algorithm with the primary noise dðnÞ decomposed into the modelled
portion dmðnÞ and the unmodelled portion duðnÞ:
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dmðnÞ and duðnÞ; in some sense, can be, respectively, regarded as the modelled and
unmodeled portion of the primary noise dðnÞ [8]. Obviously, Efd2

u ðnÞg is equal to the
global minimum of Efe2ðnÞg:

3.1. duðnÞ ¼ 0

If the adaptive IIR filter has sufficient orders such that the unmodelled portion duðnÞ is
equal to zero, then equation (30) can be written as

dðnÞ ¼ SðzÞ BoðzÞ
1 � AoðzÞ xðnÞ ð32aÞ

or

dðnÞ ¼ hoTwðnÞ: ð32bÞ

Using equation (32b), equation (17) can be written as

xðnÞ ¼ �*yy
T
wðnÞ; ð33Þ

where *yyðnÞ ¼ hðnÞ � ho: From equations (33) and (26), it follows that

*yyðn þ 1Þ ¼ ½I� mwðnÞwTðnÞ�*yyðnÞ: ð34Þ

Taking expectation at both sides of the above equation yields [3]

Ef*yyðn þ 1Þg ¼ ½I � mEfwðnÞwTg�Ef*yyðnÞg: ð35Þ

Let lmax represent the maximum eigenvalue of the matrix EfwðnÞwTg; if

05m5
2

lmax

; ð36Þ

it can be seen from equation (35) that as n ! 1; then Ef*yyðnÞg ! 0; i.e., EfhðnÞg ! ho;
which is the desired result of global convergence.
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Note that

lmax5tr½EfwwTg� ¼ Nssx þ Msd ; ð37Þ
where tr½	� represents the trace of a matrix, ssx and sd represent the power of SðzÞxðnÞ and
dðnÞ; respectively, and the step-size m in equation (36) can be further restricted as [3]

05m5
2

Nssx þ Msd

: ð38Þ

It is worthy of note that the step-size m may be well below the bound given in equation
(38) due to the assumption of slow adaption, which is common for a filtered-version
algorithm such as FXLMS, FULMS [3].

3.2. duðnÞ=0

Equation (30) can be written as

dmðnÞ ¼ hoT/ðnÞ; ð39Þ
where

/ðnÞ ¼ ½SðzÞxðnÞSðzÞxðn � 1Þ 	 	 	 SðzÞxðn � N þ 1Þ 	 	 	 dmðn � 1Þ 	 	 	 dmðn � MÞ�T:
Substituting equation (39) into equation (29) yields

dðnÞ ¼ hoT/ðnÞ þ duðnÞ ¼ hoTwðnÞ þ ½1 � AoðzÞ�duðnÞ: ð40Þ
Defining *yyðnÞ ¼ hðnÞ � ho; from equations (40) and (17) it follows that

xðnÞ ¼ �*yyðnÞoTwðnÞ þ ½1 � AoðzÞ�duðnÞ: ð41Þ
Using equations (41) and (26), one can get

*yyðn þ 1Þ ¼ ½I� mwðnÞwTðnÞ�*yyðnÞ þ mf½1 � AoðzÞ�duðnÞgwðnÞ: ð42Þ
Taking expectation at both sides of equation (42) yields

Ef*yyðn þ 1Þg ¼ ½I� mEfwðnÞwTðnÞgEf*yyðnÞg�
þ mEff½1 � AoðzÞ�duðnÞgwðnÞg: ð43Þ

Comparing equation (43) with equation (35), it can be seen that they both have the same
convergence condition; however, due to the presence of the extra term Eff½1 �
AoðzÞ�duðnÞgwðnÞg; Ef*yyðnÞg in equation (43) will converge to a non-zero value. Defining
R ¼ EfwðnÞwTðnÞg; r ¼ Eff½1 � AoðzÞ�duðnÞgwðnÞg; for a suitable step-size m; it can be
seen from equation (43) that as n ! 1; then Ef*yyðnÞg ! R�1r; so

E hð1Þf g � ho ¼ Ef*yyð1Þg ¼ R�1r: ð44Þ
Equation (44) gives the expression for the bias in steady state. Therefore, when duðnÞ is not
equal to 0, EfhðnÞg may converge to a biased result other than the optimal one ho:
Generally, when the power of duðnÞ is relatively insignificant such that the bias is small, the
proposed algorithm can still be expected to have a better noise reduction than the FULMS
algorithm.

4. EFFECTS OF ACOUSTIC FEEDBACK

When acoustic feedback exists, i.e., FðzÞ=0; the reference signal xðnÞ; as shown in
Figure 1(b), can be expressed as

xðnÞ ¼ x0ðnÞ þ FðzÞyðnÞ ¼ x0ðnÞ þ FðzÞhTðnÞuðnÞ: ð45Þ
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With the assumption of slow adaption, the above equation can be written as [9]

xðnÞ ¼ x0ðnÞ þ hTðnÞ½FðzÞuðnÞ�: ð46Þ

Equation (46) indicates that the reference signal xðnÞ is dependent on hðnÞ; so from
equation (16), it follows that xðnÞ is no longer a linear combination of elements of the
coefficient vector hðnÞ; thus Efx2ðnÞg is no longer a quadratic function. Therefore, when
acoustic feedback exists, the proposed algorithm may converge to a local minimum. There
are two points worth discussing:

(1) In references [3, 2], the dependence of reference signal xðnÞ on the coefficient vector
hðnÞ is ignored, and the rationale for ignoring the dependence of xðnÞ on hðnÞ is shown in
reference [10]. Under that condition, the proposed algorithm can still show global
convergence, as shown in section 2.

(2) By comparing equations (3) and (16), it is seen that XðnÞ and YðnÞ in equation (3) are
both dependent on the coefficient vector hðnÞ; while in equation (16) only XðnÞ is
dependent on hðnÞ; and DðnÞ is independent of hðnÞ: Efx2ðnÞg is expected to have less
minima than Efe2ðnÞg: Therefore, the global convergence of the proposed algorithm is
more probable than that of the FULMS algorithm.

5. SIMULATION RESULTS

Many simulation results show that the proposed algorithm presents good convergence
properties. One example is given below.

In this example, the proposed algorithm is compared to the FULMS algorithm by using
experimental transfer functions that are available in the disk attached to reference [3].
According to the transfer functions given in reference [3], M and N (orders of the adaptive
IIR filter) should be, respectively, greater than or equal to 73 and 72 in order to model the
system perfectly. Frequency responses of the primary path PðzÞ; secondary path SðzÞ and
feedback path FðzÞ are shown in Figures 5, 6 and 7, respectively, where the normalized
frequency is used (with Nyquist frequency equal to 1). In the simulation, initial coefficients
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Figure 5. Frequency response of the primary path.
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Figure 7. Frequency response of the acoustic feedback path.
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are all set to 0. When the noise source is assumed to be a white noise with a variance of 1,
simulations are carried out in the following four cases: (1) M ¼ 75;N ¼ 75; (2) M ¼
50;N ¼ 50; (3) M ¼ 25;N ¼ 25; (4) M ¼ 13;N ¼ 13: It is found that the maximum
acceptable step-size for the FULMS algorithm is much smaller than that for the proposed
algorithm under the same condition. To cancel the ambiguous effects of step-size on the
steady state performance, the same step-size is used for the two algorithms. In case 1, with
step-size m ¼ 0	5 
 10�5; the total noise reductions in steady state are about 15 dB for the
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Figure 9. Power spectrum of the residual noise. noise source: white noise; filter order: M ¼ 50;N ¼ 50;
step-size: m ¼ 1 
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FULMS algorithm and 19 dB for the proposed algorithm. In case 2 with step-size m ¼
1 
 10�5; and in case 3 with step-size m=1
 10�4, the corresponding total noise reductions
are 13 and 19 dB, and 2 and 13 dB respectively. In case 4, it failed to converge by the
FULMS algorithm, and 5 dB noise reduction is obtained by the proposed algorithm with
step-size m ¼ 1 
 10�4: The noise reduction effects at different frequency for the two
algorithms in the first three cases are shown in Figures 8–10, from which it can be seen that
the proposed algorithm has a better noise reduction than the FULMS algorithm in a wide
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Figure 10. Power spectrum of the residual noise. Noise source: white noise; filter order: M ¼ 25;N ¼ 25;
step-size: m ¼ 1 
 10�4:

0 0.2 0.4 0.6 0.8 1
-10

0

10

20

30

40

50

60

Normalized Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

ANC off                   
ANC on: FULMS algorithm
ANC on: proposed algorithm

Figure 11. Power spectrum of the residual noise. Noise source: two sinusoids corrupted by a white noise; filter
order: M ¼ 50;N ¼ 50; step-size: m ¼ 1 
 10�4:
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frequency range for both the sufficient and reduced order cases. It is interesting to note
that the noise reduction of the FULMS algorithm decreases more rapidly than that of the
proposed algorithm with the reduction of the filter order.

When the noise source is two sinusoids (with normalized frequency 0	4 and 0	65,
respectively, and both amplitudes 10) corrupted by a white noise (with a variance of 1),
with step-size m ¼ 1 
 10�5 the total noise reduction for the FULMS algorithm is less than
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1 dB; however, 14 dB has been gained for the proposed algorithm. The noise reduction
effects at different frequency are shown in Figure 11, from which it can be seen that two
sinusoids are well cancelled by the proposed algorithm. For the FULMS algorithm only
one sinusoid is reduced significantly; unfortunately, the two new peaks in the low
frequency counteract the reduction. Appearance of the new peaks may be a consequence
of the improper poles of the adaptive IIR filter.

6. SUMMARY

Using IIR filters instead of FIR filters in the ANC system can reduce the computational
complexity significantly. However, the conventional IIR filter-based FULMS algorithm
cannot ensure global convergence. In this paper, we proposed a new IIR filter-based
algorithm, which is shown to have a better global convergence property.
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APPENDIX A: THE PROOF OF ‘‘Efx2ðnÞg ¼ 0 IF AND ONLY IF Efe2ðnÞg ¼ 0’’

Let EðejoÞ represent the power spectral density function of eðnÞ; with the assumption of
slow adaption; it follows from equation (13) that [11]

Efx2ðnÞg ¼ Ef½ð1 � Aðn; zÞeðnÞ�2g

¼ 1

2p

Z 2p

0

j1 � Aðn; ejoÞj2EðejoÞ do: ðA1Þ

Since all the poles of 1 � Aðn; zÞ are within the unit circle (if only the IIR filter is stable), it
is obvious that 8o 2 ½0; 2pÞ; j1 � Aðn; ejoÞj > 0: Note that Efe2ðnÞg ¼
ð1=2pÞ

R 2p
0 EðejoÞ do; and it follows from equation (A1) that

Efx2ðnÞg ¼ 0 ,
Z 2p

0

jEðejoÞj2 do ¼ 0 , Efe2ðnÞg ¼ 0: ðA2Þ


	1. INTRODUCTION
	Figure 1

	2. DERIVATION OF THE NEW ALGORITHM
	Figure 2
	Figure 3
	TABLE 1
	TABLE 2

	3. CONVERGENCE ANALYSIS
	Figure 4

	4. EFFECTS OF ACOUSTIC FEEDBACK
	5. SIMULATION RESULTS
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11

	6. SUMMARY
	REFERENCES
	APPENDIX A: THE PROOF OF " E{ 2(n)} = 0 IF AND ONLY IF E{e2(n)} = 0"

